Virtual Tryout - Digitalization for an Efficient Commissioning of Forming Tools

Presentation by Dr. Lars Penter, Head of Machine Technology at University of Dresden.

The life cycle of a forming tool consists of five major phases. It starts with the process and tool design followed by its assembly, the ramp-up and serial as well as spare part production. Due to every increasing system complexities, various simulation tools accompany today’s tool life cycle. A popular term in the current world of production is the “Digital twin”. It is a simulation model, which contains at least two sub-models of different physical disciplines, connects different time scales and regularly synchronizes data with the real system. Such a model must be a highly accurate white box model.The presentation will address the generation of a virtual twin on the example of the virtual try-out of forming tools. The simulation model employs RADIOSS (for forming process simulation), MotionSolve (for multi-body simulation of machine mechanics) or Activate (for more complex multi-domain modelling of mechanics, hydraulics and electrical components). Currently, the digital twin allows for computing the interactions between forming process and die cushion. This enables the calculation of correlations between die-cushion cylinder forces and flange draw-in. The presentation shows how optimizing these cylinder forces in HyperStudy benefits the final part quality and shortens real tool try-out time.

All Activate,Compose,Embed Videos

Altair Model-Based Development Customer Stories from 2019 Global ATC

These success stories illustrate how customers are leveraging Altair's Math & Systems technology for Model-Based Development to develop better products, faster. Simulations involve 3D, 1D, and/or 0D modeling approaches based on the integrated use of Altair MotionSolve™, Altair Activate™, and/or Altair Compose™.

Presentations, Videos

Altair Activate Key Capabilities

Playlist highlighting the key capabilities of Altair Activate

Videos

Altair Embed Key Capabilities

Playlist featuring the key capabilities of Altair Embed

Videos

Multi-Disciplinary Evaluation Of Vehicle Platooning Scenarios

Presenter: Christian Kehrer, Business Development Manager, Altair

This presentation discusses the multi-disciplinary evaluation of truck platooning, with the lead truck sending out acceleration, braking and steering signals for the following trucks to react accordingly. The benefits address safety requirements, fuel savings, traffic capacity and convenience. The presentation demonstrates why platooning requires a holistic approach in the sense of connecting different modeling and simulation methods for a virtual evaluation of this system of systems.

Presentations, Videos

Exoskeleton Modeling Using MotionSolve & Activate

Presenter: Nino Michniok, Mechanical Engineering Student, University of Kaiserslautern

The first part of the presentation shows the detailed process of building the multibody system of an actuated exoskeleton in MotionView/MotionSolve (MV/MS). The required movements are transferred to the corresponding joints by “Motions”. By this the exoskeleton can Stand Up, Walk diagonally across the floor and Sit Down. In the second part the “Motions” in MV/MS are replaced by controllers (position control) whichdeliver a certain torque to actuate the exoskeleton. The main topic here is the implementation of the co-simulation between Activate and MV/MS. In the end the presentation gives a quick outlook of similar works at the University of Applied Sciences Kaiserslautern in Germany.

Presentations, Videos

Deep Reinforcement Learning for Robotic Controls

Presenter: Dario Mangoni on behalf of Alessandro Tasora, Engineering Professor and Digital Dynamics Lab Leader, University of Parma

This presentation address the use of the Proximal Policy Optimization (PPO) deep reinforcement learning algorithm to train a Neural Network to control a robotic walker and a robotic arm in simulation. The Neural Network is trained to control the torque setpoints of motors in order to achieve an optimal goal.

Presentations, Videos

Vehicle Concept Design using Ride & Comfort Requirements for Truck & Trailer System Dynamics

Presenter: Kaustubh Deshpande, Chassis Engineer, Nikola Motor Company

This presentation describes Nikola Motor’s progression of design maturity from 1D CAE to 3D CAD/CAE for chassis system engineering work on their electric trucks. This progression spans from Voice of Customer to Functional Requirements to Functional Deployment to Structural Deployment. Nikola Motor starts with a ‘First Principles’ model of their truck/trailer vehicle dynamics, then they perform system modeling & simulation with Altair Activate using quarter- and half-truck/trailer models. Block diagrams are created using both signal-based blocks and physical-based blocks (with Modelica). Through this methodical process, Nikola Motor is able to derive more and better insight earlier in their development process regarding important vehicle characteristics for their trucks – ranging from ‘yaw rate of the tractor for loaded vs. unloaded trailer’ to ‘full-trailer load distribution sensitivity due to fifth wheel location’. Work is in-progress to tighten the connection between their 1D CAE simulations in Altair Activate™ and their 3D CAE multi-body dynamics simulations.

Presentations, Videos

Heavy Equipment Simulations: Multi-body, Hydraulics & DEM

Presenter: Ronald Kett, Technical Specialist, Altair

For a Stewart-Gough-Platform (Hexapod), various software tools were used to study and design highly dynamic hydraulic drives together with an overall system control. Calculation of Eigenfrequencies, control design and comparison, hydraulic system design, and overall simulation control were done in Altair Activate, the mechanics of the Stewart-Gough-Platform was taken from a CAD model into Altair Inspire Motion. The co-simulation between control + hydraulics and mechanics was performed using Activate and Altair MotionSolve. Altair HyperView and HyperGraph were used to analyze and visualize the results. With the highly integrated solutions, the results could be achieved within a very short time. The different types of models (linear/simplified/full mechanics/hydraulics) made it possible to start with fast development cycles and finally achieve reliable results.

Presentations, Videos
View All
Have a Question? If you need assistance beyond what is provided above, please contact us.

Subscribe to join our Newsletter
Learn about product training, news, events, and more.